ANALISIS BEBAN KERJA KARYAWAN DI PERUSAHAAN KONVEKSI AL-HASRI GARUT

Ade Geovania Azwar ¹, Nunung Fauziah ²

¹Departemen Teknik Industri, Fakultas Teknik, Universitas Sangga Buana, Jl. PHH. Mustofa No. 68, Bandung 40124

Abstrak

Perusahaan konveksi Al-Hasri Garut merupakan perusahaan yang bergerak dibidang konveksi kerudung dengan skala produksi yang cukup besar. Selama proses produksi berlangsung sering terjadi keadaan dimana waktu produksi menjadi lebih panjang dari yang sudah dijadwalkan. Sehingga untuk mengetahui beban kerja yang dirasakan oleh para operator jahit maka dilakukan pengukuran dengan menggunakan metode Cardiovascular Load (CVL) dan (National Aeronautics and Sapace Administration Task Load index) NASA-TLX. Metode Cardiovascular Load (CVL) merupakan metode yang digunakan untuk pengukuran denyut nadi sebelum dan sesudah bekerja sedangkan (National Aeronautics and Sapace Administration Task Load index) NASA-TLX merupakan metode yang digunakan dalam menganalisis beban kerja mental yang dirasakan pekerja sebagai efek dari pekerjaan.

Berdasarkan hasil penelitian yang telah dilakukan pada 30 operator jahit didapatkan hasil pengukuran beban kerja fisik dengan metode CVL terdapat sebagian operator yang mengalami kelelahan ringan sebanyak 10% dengan tingkat denyut nadi berada pada rentang 30% - \le 60%, dan untuk 90% operator dinyatakan tidak mengalami kelelahan, hal ini didasari dengan hasil perhitungan rata-rata CVL yaitu sebesar 20% yang kemudian dibandingkan dengan katogori beban kerja menurut pernyataan Suma'mur P.K (1996) dalam Tarwaka (2004), yang menyatakan bahwa persentase tersebut masuk kedalam rentang kategori 0-30% yang artinya operator tidak mengalami kelelahan secara fisik. Sedangkan dengan metode NASA-TLX didapatkan empat dari enam indikator pengukuran beban kerja dikategorikan sangat tinggi dan dua lainnya dikategorikan tinggi dengan hasil rata-rata pengukuran beban kerja mental sebesar 81,26 yang berarti terjadi kelelahan secara mental terhadap operator jahit. Adapun faktor yang menyebabkan timbulnya beban kerja adalah keterbatasan waktu penyelesaian, ketelitian operator serta banyaknya model kerudung yang dijahit.

Kata kunci: Cardiovascular Load (CVL), National Aeronautics and Sapace Administration Task Load index(NASA-TLX).

Abstract

Al-Hasri Garut convection company is a company engaged in the convection of veils with a fairly large production scale. During the production process, there are often situations where the production time is longer than scheduled. So to find out the workload felt by the sewing operators, measurements were carried out using the Cardiovascular Load (CVL) and NASA-TLX (National Aeronautics and Sapace Administration Task Load index) methods. Cardiovascular Load (CVL) method is a method used for measuring pulse before and after work while (National Aeronautics and Sapace Administration Task Load index) NASA-TLX is a method used in analyzing mental workload felt by workers as an effect of work. Based on the results of research conducted on 30 sewing operators, the results of measurement of physical workload using the CVL method contained some operators who experienced mild fatigue of 10% with a pulse rate in the range of 30% - %60%, and for 90% of operators declared no experiencing fatigue, this is based on the results of the calculation of the average CVL of 20% which is then compared to the work load category according to the statement of Suma'mur PK (1996) in Tarwaka (2004), which states that the percentage falls into the category 0- category 30% which means that the operator does not experience physical fatigue. While the NASA-TLX method obtained four of the six indicators of workload measurement are categorized as very high and the other two are categorized as high with an average result of mental workload measurement of 81.26 which means there is a mental fatigue for the sewing operator. The factors that cause the emergence of workload are limited completion time, operator accuracy and the number of veiled models sewn.

Keywords: Cardiovascular Load (CVL), National Aeronautics and Sapace Administration Task Load index(NASA-TLX)

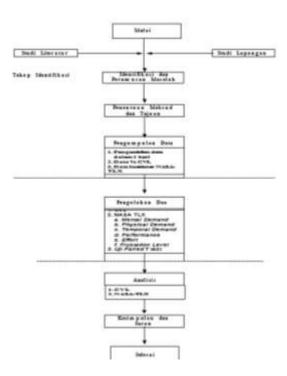
ISSN: 2858-1093

ISSN: 2858-1093

PENDAHULUAN

Perkembangan industri yang sangat cepat pada saat ini membuat perusahaan saling berlomba untuk produksi dalam kapasitas besar dengan kualitas produksi yang sangat diperhatikan. Terkadang suatu proses produksi mengalami gangguan sehingga produk yang dihasilkan menjadi tidak sesuai dengan yang diharapkan dan mengalami kecacatan. Kecacatan produk akan mengurangi efektifitas kerja dan menambah biaya penanganan produksi. Selain teknologi, peranan manusia juga sangat penting dalam penyelesaian suatu pekerjaan, oleh karena itu, peran sumberdaya manusia dalam organisasi semakin tinggi tingkat kepentingannya.

Ada beberapa masalah yang berkaitan dengan sumber daya manusia, salah satunya adalah kelelahan dan beban kerja. Masalah yang berkaitan dengan kelelahan terjadi karena adanya target yang ditetapkan perusahaan terlalu tinggi dan juga tingginya permintaan standar kualitas barang yang diminta oleh pembeli dan buyer. Hal ini menyebabkan tingginya tingkat kesalahan jahit yang dilakukan oleh karyawan yang terkadang melewati batas toleransi. Kesalahan ini harus diperbaiki kembali oleh karyawan yang akibatnya pekerjaan tidak bisa selesai tepat waktu karena karyawan harus mengulangi kembali pekerjaan yang salah, sedangkan target pekerjaan baru masih menumpuk. Hal inilah yang menimbulkan tekanan pada karvawan sehingga membuat karvawan stress dan merasakan beban dalam bekerja, beban kerja yang dirasakan ini akan mempengaruhi kondisi fisik dan proses berfikir para karyawan.


METODE PENELITIAN

Beban kerja dapat diketahui jenis dan tingkatannya dengan menggunakan suatu metode. Untuk mengetahui beban kerja fisik dengan metode *Cardiovascular Load* (CVL) atau % CVL dalam aplikasi *smartphone* yaitu Kardiograf, dan beban kerja mental dapat dilakukan dengan menggunakan metode NASA-TLX dapat dilihat pada gambar 1.

HASIL DAN PEMBAHASAN

Pengukuran Beban Kerja Fisik

Pengukuran beban kerja fisik dapat dilakukan dengan menggunakan metode *Cardiovascular Load* (CVL) yaitu dengan menggunakan aplikasi *smartphone* atau juga dapat dilakukan secara manual yaitu dengan menggunakan *stopwach*. Pengukuran beban kerja ini dilakukan dengan mengukur denyut nadi pekerja secara langsung dengan menggunakan aplikasi *Smartphone* yaitu kardiograf, pengukuran dilakukan sebanyak dua kali dalam 1 hari yaitu sebelum dan sesudah operator bekerja. Berikut ini adalah data hasil rekapitulasi dan perbandingan %CVL dari operator jahit perusahaan konveksi Al-Hasri Garut yang dapat dilihat pada tabel 1.

Gambar 1. Flow Chart Penelitian

Tabel 1. Data Hasil Rekapitulasi Dan Perbandingan % CVL

Operator	usia	Omyel Male Scholen Zop	Doyal Yalı Sadab Bekeya	Oceyet Main Maksanai	Zop Zop	% CVC	Костора
ı	26	거	93	124	19	19%	Telak Topalı Edebba
2	30	íl	87	191	27	21%	Telak Topalı Eddakan
1	24	71	89	126	18	17%	Telak Topeli Eddalar
- 1	34	12	97	166	15	18%	Telak Topalı Eddakan
í	32	65	89	122	20	17%	Telak Topalı Sakkalar
í	25	7]	90	175	17	17%	Telak Topalı Soldakan
,	35	76	92	líú	16	18%	Telak Topalı Sabbasa
1	27	71	94	173	23	23%	Telak Topalı Sabbasa
,	31	72	96	167	24	25%	Telak Topalı Sabbasa
10	24	ρ	86	26	19	17%	Telak Topalı Sabbasa
П	28	거	93	192	19	16%	Telak Topalı Sabbasa
12	22	75	96	173	17	15%	Telak Topalı Sabbasa
13	19	"]	89	201	16	13%	Telak Topalı Sakkalar
14	28	15	98	172	13	15%	Telak Topalı Sakkalar
15	35	"	101	líú	22	26%	Telak Topalı Sabbasa
16	33	72	104	167	32	34%	Operata Perhanta
17	24	65	97	126	32	29%	Telak Topalı Sakkalar
18	21	69	89	155	20	15%	Telak Topalı Sabbasa
19	32	75	103	163	28	30%	Operata Perhanta
20	35	12	97	135	15	15%	Telak Topalı Sabbasa
21	34	65	84	líí	15	15%	Telak Topalı Sakkalar
22	25	76	97	175	21	21%	Telak Topalı Sakkalar
23	25	71	85	175	14	13%	Tal± Topalı Zdddalar
24	26	75	92	124	17	17%	Telak Topalı Saktalar
25	25	76	92	171	16	16%	Talat Topalı Σdebina
26	27	8	92	173	23	22%	Talak Topalı Soldalar
27	27	11	110	17]	29	32%	Opoteka Poteaka
28	22	거	95	152	21	17%	Tal± Topalı Sobbina
29	22	Ø	93	152	26	20%	Telak Topeli Sobben
30	33	íí	104	127	39	32%	Opoleka Polenka

 3
 Sedang
 41-60

 4
 Tinggi
 61-80

 5
 Sangat Tinggi
 81-100

ISSN: 2858-1093

Data diatas menunjukan penentuan klasifikasi beban kerja berdasarkan peningkatan denyut nadi kerja yang dibandingkan dengan denyut nadi maksimum. Beban denyut nadi (cardiovascular) atau %CVL diatas dihitung dengan rumus berikut ini:

Setelah %CVL didapatkan, selanjutnya dilakukan perbadingan dengan klasifikasi yang telah ditetapkan. Berikut adalah klasifikasi dari setiap presentase perhitungan %CVL:

Tabel 2. Pengkategorian Beban Kerja Fisik

No	Kategori	Skala Interval
-	Tidak Terjadi Kelelahan	%CVL ≤30%
2	Maka perlu dilakukan perbaikan	30% - ≤ 60%
3	Kerja dalam waktu singkat	60% - ≤ 80%
4	Dilakukan tindakan segera	80% - ≤ 100%
j	Tidak diperbolehkan beraktivitas	> 100%

Berdasarkan data hasil perhitungan %CVL yang telah dibandingkan dengan klasifikasi ditetapkan dapat dikatakan mengalami telah kelelahan secara fisik apabila hasil dari perhitungan tingkat %CVL berada diatas 30%. Berdasarkan perhitungan diatas dapat diketahui bahwa sebesar 90% operator perusahaan konveksi Al-Hasri Garut secara fisik tidak mengalami kelelahan karena %CVL kurang dari 30% dan dapat dikatakan bahwa aktivitas kerja yang dilakukan operator masih normal, kemudian sebanyak 25% operator mengalami kelelahan karena %CVL berada di atas 30%. Hal ini terjadi dimungkinkan karena 25% operator yang mengalami kelalahan telah melakukan kerja lembur pada hari sebelumnya sehingga %CVL berada diatas 30% yang berarti perlu dilakukan perbaikan terhadap aktivitas kerja operator.

Pengukuran Beban Kerja Mental

Pengukuran beban kerja mental dilakukan dengan menghitung skor Kuesioner NASA-TLX yang telah dilakukan pada perusahaan konveksi Al-Hasri Garut. Data dikumpulkan berdasarkan kategori yang ditentukan dengan menggunakan bantuan *tally* agar hasil pembobotan lebih akurat. Sebelum mengetahui hasil rekapitulasi, berikut ini adalah pengkategorian beban kerja mental dalam teori NASA-TLX yang terdiri dari lima tingkatan yang tersaji dalam tabel berikut:

Tabel 3. Pengkategorian Beban Kerja Mental

ΝIα	Votacomi	Skala Interval
INO	Kategori	Skala Interval
1	Sangat Rendah	0-20
2	Rendah	21- 40

Hasil dari perkalian jumlah *tally* dan pemberian *Rating* sebelum diketahui skor beban kerja dari masing-masing operator yang tersaji pada tabel berikut:

Tabel 4. Hasil Perkalian *Tally* dan *Rating* NASA-TLX

0	Indikator						
Operator	KM	KF	KW	Р	TU	TF	
1	240	180	160	180	200	280	
2	160	300	320	100	360	80	
3	400	360	180	200	100	90	
4	70	60	320	180	300	320	
5	160	200	140	240	180	140	
6	180	300	500	0	360	90	
7	240	270	400	0	400	80	
8	210	180	270	160	200	240	
9	240	180	360	0	320	180	
10	160	240	400	210	180	0	
11	180	280	360	80	200	80	
12	100	180	180	210	270	80	
13	280	270	280	90	200	100	
14	140	270	320	120	300	70	
15	160	160	360	180	320	60	

Operator	Indikator						
Operator	KM	KF	KW	Р	TU	TF	
16	240	180	320	60	360	70	
17	160	240	400	70	320	0	
18	180	210	270	180	240	70	
19	240	210	360	80	140	140	
20	450	320	180	90	240	0	
21	0	320	270	180	400	180	
22	90	320	320	270	160	90	
23	240	120	180	240	450	0	
24	160	240	240	1540	270	70	
25	320	270	270	160	100	180	
26	210	180	240	240	270	0	
27	240	350	100	70	180	0	
28	140	240	400	70	240	80	
29	140	120	320	240	270	70	
30	80	280	360	240	270	0	

Hasil rekapitulasi dari pembobotan dan pemberian *rating* dari masing-masing indikator beserta perhitungan skor beban kerja mental operator jahit perusahaan konveksi Al-Hasri Garut tersaji dalam tabel berikut:

Tabel 5. Perhitungan Skor Beban

Operator	Skor	Keterangan
1	82.7	Sangat Tinggi
2	88.0	Sangat Tinggi
3	88.7	Sangat Tinggi
4	83.3	Sangat Tinggi
5	70.7	tinggi
6	95.3	Sangat Tinggi
7	92.7	Sangat Tinggi
8	84.0	Sangat Tinggi
9	85.3	Sangat Tinggi
10	79.3	Tinggi
11	78.7	Tinggi
12	68.0	Tinggi
13	81.3	Sangat Tinggi
14	81.3	Sangat Tinggi
15	82.7	Sangat Tinggi
16	82	Sangat Tinggi
17	79.3	Tinggi
18	76.7	Tinggi
19	78	Tinggi
20	85.3	Sangat Tinggi
21	90	Sangat Tinggi
22	83.3	Sangat Tinggi
23	82	Sangat Tinggi
24	75	Tinggi
25	86.7	Sangat Tinggi
26	76	Tinggi
27	62.7	Tinggi
28	78	Tinggi
29	77.3	Tinggi
30	82	Sangat Tinggi

Setelah diketahui skor beban kerja mental dari operator jahit perusahaan konveksi Al-hasri Garut, berikut adalah grafik dari hasil perhitungan tersebut.

Gambar 2. Grafik Skor Nasa-TLX

Dari data diatas dapat dilihat bahwa para operator jahit merasakan kelelahan secara mental, hal ini menyebabkan tingkat beban kerja para operator jahit menjadi relatif sangat tinggi sehingga dapat mengganggu aktivitas kerja.

Kemudian perhitungan perbandingan nilai kebutuhan per indikator yaitu dengan cara menghitung rata-rata masing-masing indikator dari seluruh operator jahit perusahaan konveksi Al-Hasri Garut. Perhitungan nilai rata-rata tersebut dapat dilihat pada tabel berikut:

Tabel 6. Rata-rata Nilai Operator per Indikator

Indikator	Rata-rata Tally	Rata-rata Rating	Rata-rata Nilai
KM	2.5	76	194
KF	3.0	78	234
KW	3.5	83	293
Р	1.8	81	143
TU	2.93	89	260
TF	1.2	81	95
Jumlah	15	488	1219

Kebutuhan yang paling tinggi dari rata-rata nilai per indikator adalah Tingkat Usaha dan Kebutuhan Waktu. Data ini menunjukan bahwa indikator tertinggi tersebut mempengaruhi beban mental mekanik secara tidak langsung. Kebutuhan waktu yang dibutuhkan operator jahit untuk menyelesaikan pekerjaannya sesuai dengan waktu yang telah ditetapkan, selain itu tingkat usaha yang oprerator jahit untuk melakukan dilakukan kegiatannya terbilang sangat tinggi. Tinggi hal ini disebabkan karena tingginya nilai indikator yang lain, sehingga menyebabkan tingkat tuntutan beban kerja yang dirasakan oleh masing- masing operator menjadi semakin tinggi.

Kegiatan kerja yang dilakukan oleh para operator menuntut mereka untuk melakukan kegiatan secara fisik dan mental, hal ini berbanding terbalik dengan hasil perhitungan yang didapatkan, dari hasil perhitungan justru menyatakan bahwa kedua indikator yang sangat dibutuhkan oleh para operator ini mendapatkan nilai paling rendah yaitu sebesar (Kebutuhan Mental) 76 dan (Kebutuhan Fisik) 78. Hal ini mungkin disebabkan karena kebutuhan dari indikator yang lain memberikan tekanan yang lebih tinggi kepada operator, sehingga hasil dari indikator KM dan KF menjadi indikator yang bernilai paling rendah.

KESIMPULAN

Dari hasil pengolahan data dan analisis yang telah dilakukan dapat disimpulkan bahwa:

 Hasil pengukuran beban kerja fisik dengan menggunakan metode CVL menjelaskan bahwa hanya 10% operator yang mengalami kelelahan

ISSN: 2858-1093

- ringan dan 90% operator dinyatakan tidak mengalami kelelahan.
- 2. Hasil pengukuran beban kerja mental dengan menggunakan metode NASA-TLX menyatakan bahwa terjadi kelelahan secara mental terhadap para operator.
- 3. Faktor yang menyebabkan timbulnya beban kerja pada operator adalah berasal dari keterbatasan waktu penyelesaian, ukuran kelonggaran terhadap kecacatan produk dan model jahitan kerudung.

DAFTAR PUSTAKA

- Iridiastadi Herdianto, dkk. 2017. Ergonomi Suatu Pengantar. Bandung: PT Remaja Rosdakarya Offset.
- Sutalaksana Z. Iftkar, dkk. Teknik Perancangan Sistem Kerja. ITB:Bandung. 2006:83
- Sedarmayanti. Tata Kerja Dan Produktivitas Kerja. CV. Mandar Maju:Bandung. 2011:195.
- Saputra Dwi Agung, 2014. Pengaruh Stres dan Kondisi Fisik Lingkungan Kerja Terhadap Prestasi Kerja Karyawan CV. Daya Budaya Corporation Yogyakarta.
- Yulia Putri. 2017. Analisa Kelelahan pada Mekanik Menggunakan Metoda Cardiovascular Load (CVL) dan National Aeronautics and Space Administration Task Load Index (NASA TLX) Untuk Mengukur Beban Kerja Fisik dan Mental.
- Atiqoh Januar, dkk. 2014. Faktor-Faktor Yang Berhubungan Dengan Kelelahan Pada Pekerja Konveksi Bagian Penjahitan Di CV. Aneka Garment Gunungpati Semarang. Jurnal Kesehatan Masyarakat (e-journal). Vol.2. No.2
- Putri Mahiji Anugrah Renty , dkk. 2017. Analisis Beban Kerja Dengan Menggunakan Metode CVL dan NASA-TLX di PT. ABC. Jurnal Penelitian. Vol. 15, No. 2, 121 – 255.
- Simanjuntak Adelina Risma. 2010. Putri Mahiji Anugrah Renty , dkk. 2017. Analisis Beban Kerja Mental Dengan Menggunakan NASA-Task Load Index. Jurnal Penelitian. 3(1):078-086
- Sandra G. Hart, dkk. Nasa-Task Load Index (NASA-TLX) 20 Years Later.