KOMPARASI ALGORITMA LR, K-NN DAN SVM UNTUK ESTIMASI AREA KEBAKARAN HUTAN

Fitriyani Fitriyani, Rangga Sanjaya

Abstract


Kebakaran hutan menimbulkan berbagai permasalahan seperti asap yang dapat mengganggu sistem pernapasan, kerusakan lingkungan dan bencana lainnya. Kebakaran hutan juga dapat berdampak pada biaya yang akan dikeluarkan untuk menyelesaikan masalah yang timbul akibat kebakaran hutan, sehingga diperlukan penelitian untuk mengukur tingkat radiasi api pada area yang terbakar. Algoritma LR (Linear Regression), K-NN (K-Nearest Neighbor) dan SVM (Support Vector Machine) merupakan metode untuk regresi dan klasifikasi. Pada penelitian ini dilakukan perbandingan atau komparasi untuk mendapatkan algoritma terbaik dalam estimasi area kebakaran hutan.


Keywords


Estimasi, Kebakaran Hutan, Linear Regression, K-Nearest Neighbor, Support Vector Machine.

Full Text:

PDF

References


L. Tacconi, "Kebakaran Hutan di Indonesia: Penyebab, Biaya dan Implikasi Kebijakan," Center for International Forestry Research, pp. 1-35, 2003.

R. K. Dewi, "Kebakaran Hutan dan Lahan, Apa Dampak dan Upaya Pencegahannya," Kompas, 25 Agustus 2018. [Online]. Available: https://nasional.kompas.com/read/2018/08/25/14340331/kebakaran-hutan-dan-lahan-apa-dampak-dan-upaya-pencegahannya. [Accessed 21 Oktober 2018].

A. Alonso-Betanzos, O. Fontela-Romero, B. Guijarro-Berdinas, e. Hernandez-Pereira, M. I. P. Andrade, E. Jimenez, J. L. L. Soto and T. Carballas, "An intelligent system for forest fire risk prediction and fire fighting management in Galicia," Expert Systems with Applications, pp. 545-554, 2003.

C. Quintano, A. Fernandez-Manso, A. Stein and W. Bijker, "Estimation of area burned by forest fires in Mediterranean countries: A remote sensing data mining perspective," Forest Ecology and Management, pp. 1597-1607, 2011.

E. Chuvieco, D. Cocero, D. Riano, P. Martin, J. Martinez-Vega, J. d. l. Riva and F. Perez, "Combining NDVI and Surface Temperature for The Estimation of Live Fuel Moisture Content in Forest Fire Danger Rating," Remote Sensing of Environment, pp. 322-331, 2004.

K. Buza, A. Nanopoulos and G. Nagy, "Nearest Neighbor Regression in the Presence of Bad Hubs," Knowledge-Based Systems, vol. 86, pp. 250-260, 2015.

P. Cortez and A. Morais, "A Data Mining Approach to Predict Forest Fires using Meteorological Data," 2007.

R. S. Wahono, "A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks," Journal of Software Engineering, pp. 1-16, 2015.

O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook, Neew York: Springer, 2010.

X. Wang, J. Wen, Y. Zhang and Y. Wang, "Real estate price forecasting based on SVM optimized by PSO," Optik, vol. 215, no. 3, pp. 1439-1443, 2014.

M. Yetti, "Kebakaran Hutan," Kompas, 3 September 2017. [Online]. Available: https://www.kompasiana.com/yetti/59ab65cfcbb34c06d3769d02/kebakaran-hutan. [Accessed 21 Oktober 2018].

L. Vonny, "Dampak Kebakaran Hutan terhadap Lingkungan," Kompasiana, 23 November 2017. [Online]. Available: https://www.kompasiana.com/lidiaponii/5a166ec305f1cd3b6a346482/dampak-kebakaran-hutan-terhadap-lingkungan. [Accessed 21 Oktober 2018].

N. Romdlon, "Lumpuhnya Kota Pekanbaru dan kota besar lain di Sumatera pasti berdampak pada aktivitas ekonomi masyarakat.," Brilio, 21 September 2015. [Online]. Available: https://www.brilio.net/news/5-dampak-kebakaran-hutan-dan-kabut-asap-yang-berkepanjangan-150921q.html. [Accessed 21 Oktober 2018].

J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, Amsterdam: Elsevier, 2012.

E. Alpaydin, Introduction to Machine Learning, London: The MIT Press, 2010.

E. Prasetyo, DATA MINING - Konsep dan Aplikasi Menggunakan MATLAB, Yogyakarta: Penerbit ANDI, 2012.

E. Prasetyo, Data Mining-Mengolah Data Menjadi Informasi Menggunakan Matlab, Yogyakarta: Penerbit ANDI, 2014.

F. Salerno, G. Viviano, E. Carraro, E. C. Manfredi, A. Lami, S. Musazzi, A. Marchetto, N. Guyennon, G. Tartari and D. Copetti, "Total phosphorus reference condition for subalpine lakes: A comparison among traditional methods and a new process-based watershed approach," Journal of Environmental Management, vol. 145, pp. 94-105, 2014.

D. T. Larose, Data Mining Methods and Models, Canada: Wiley-Interscience, 2006.

M. Berndtsson, J. Hansson, B. Olsson and B. Lundell, Thesis Projects, London: Springer, 2008.

C. W. Dawson, Projects in Computing and Information Systems, London: Addison Wesley, 2009.


Refbacks

  • There are currently no refbacks.


 
This Journal is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License