TEKNOLOGI PEMBUATAN MAGNETITE NANOPARTIKEL DENGAN METODE SOL-GEL UNTUK LAPISAN AKTIF SENSOR GAS
DOI:
https://doi.org/10.32897/techno.2022.15.2.1216Abstrak
Dalam artikel ini digambarkan hematite nano partikel (lebih kecil dari 100 nm) telah berhasil disintesis dengan metode Sol-Gel dengan menggunakan Ferri nitrat (Fe(NO3)3.9H2O) dan Ethylene glycol (C2H6O2) sebagai prekursor pada temperature anil yang berbeda yaitu pada 200, 300 dan 400 0C. Nanopartikel magnetite yang diperoleh telah ditandai dengan alat X-Ray difraksi (XRD), Scanning Electron Microscope (SEM), energi X-ray spectrometer dispersif (EDS) dan alat Partikel Analyzer. Pengukuran XRD menunjukkan bahwa nano partikel yang diperoleh adalah fase tunggal dan ukuran partikel meningkat dengan meningkatnya suhu. Dengan mendapatkan ukuran nanopartikel Magnetite sekitar 60 nm ini menunjukkan Magnetite sebagai lapisan aktif pada sensor gas menjadi lebih sensitif.
Referensi
Salamun N, Ni HX, Triwahyono S, Jalil AA, Karim AH. reduction methods. 2011;7(1):89–92.
Xie X, Zhang X, Yu B, Gao H, Zhang H, Fei W. Rapid extraction of genomic DNA from saliva for HLA typing on microarray based on magnetic nanobeads. J Magn Magn Mater. 2004;280:164–8.
Zeng H, Li J, Liu JP, Wang ZL, Sun S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420(6914).
Koh I, Wang X, Varughese B, Isaacs L, Ehrman SH, English DS. Magnetic iron oxide nanoparticles for biorecognition: Evaluation of surface coverage and activity. J Phys Chem B. 2006;110(4).
Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Vol. 60, Advanced Drug Delivery Reviews. 2008.
Laurent S, Forge D, Port M, Roch A, Robic C, Elst L Vander, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6).
Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater. 2007;309(2).
Biddlecombe GB, Gun’ko YK, Kelly JM, Pillai SC, Coey JMD, Venkatesan M, et al. Preparation of magnetic nanoparticles and their assemblies using a new Fe(II) alkoxide precursor. J Mater Chem. 2001;11(12).
Aydin C, Mansour SA, Alahmed ZA, Yakuphanoglu F. Structural and optical characterization of sol-gel derived boron doped Fe2O3 nanostructured films. J Sol-Gel Sci Technol. 2012;62(3):397–403.
Cao SW, Zhu YJ, Cheng GF, Huang YH. Preparation and photocatalytic property of α-Fe2O3 hollow core/shell hierarchical nanostructures. J Phys Chem Solids [Internet]. 2010;71(12):1680–3. Available from: http://dx.doi.org/10.1016/j.jpcs.2010.09.006
Jain R, Sikarwar S. Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater. Int J Environ Pollut. 2006;27(1–3).
Chatterjee S, Lee DS, Lee MW, Woo SH. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide. Bioresour Technol. 2009;100(11).
Crini G. Non-conventional low-cost adsorbents for dye removal: A review. Vol. 97, Bioresource Technology. 2006.
Weiss A. D. J. Craik (Editor): Magnetic Oxides, Part 1 + 2, J. W. Wiley & Sons, London/New York/Sydney/Toronto 1975, 798 Seiten, Preis:£ 30.00. Berichte der Bunsengesellschaft für Phys Chemie [Internet]. 1976;80(2):175. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/bbpc.19760800218
Fu D, Keech PG, Sun X, Wren JC. Iron oxyhydroxide nanoparticles formed by forced hydrolysis: Dependence of phase composition on solution concentration. Phys Chem Chem Phys. 2011;13(41).
Gajović A, Silva AMT, Segundo RA, Šturm S, Jančar B, Čeh M. Tailoring the phase composition and morphology of Bi-doped goethite-hematite nanostructures and their catalytic activity in the degradation of an actual pesticide using a photo-Fenton-like process. Appl Catal B Environ. 2011;103(3–4).
Guo P, Wei Z, Wang B, Ding Y, Li H, Zhang G, et al. Controlled synthesis, magnetic and sensing properties of hematite nanorods and microcapsules. Colloids Surfaces A Physicochem Eng Asp. 2011;380(1–3).
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Vol. 26, Biomaterials. 2005.
Gupta RK, Ghosh K, Dong L, Kahol PK. Structural and magnetic properties of nanostructured iron oxide. Phys E Low-Dimensional Syst Nanostructures. 2011;43(5).
Han LH, Liu H, Wei Y. In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 2011;207(1–3).
Karami H. Synthesis and characterization of iron oxide nanoparticles by solid state chemical reaction method. J Clust Sci. 2010;21(1).
Li Z, Lai X, Wang H, Mao D, Xing C, Wang D. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-propanediamine. Nanotechnology. 2009;20(24).
Lian J, Duan X, Ma J, Peng P, Kim T, Zheng W. Hematite (α-Fe2O3) with various morphologies: Ionic liquid-assisted synthesis, formation mechanism, and properties. ACS Nano. 2009;3(11).
Siregar J, Septiani NLW, Abrori SA, Sebayang K, Irzaman, Fahmi MZ, et al. Review—A Pollutant Gas Sensor Based On Fe3O4 Nanostructures: A Review. J Electrochem Soc [Internet]. 2021;168(2):27510. Available from: http://dx.doi.org/10.1149/1945-7111/abd928
Muhajir M, Puspitasari P, Razak JA. Synthesis and Applications of Hematite α-Fe2O3 : a Review. J Mech Eng Sci Technol. 2019;3(2).
Mohammed S, Mohammed H. Characterization of Magnetite and Hematite Using Infrared Spectroscopy. J Eng Sci Inf Technol. 2018;2(1).
Morales-Morales JA, Nanopowder R. Synthesis of Hematite α-Fe2O3 Nano Powders by the controlled precipitation method. Cienc en Desarro. 2017;8(1).
Widodo, Slamet, 2010, Teknologi Sol Gel Pada Pembuatan Nano Kristalin Metal Oksida Untuk Aplikasi Sensor Gas, Prosiding Seminar Nasional Rekayasa Kimia dan Proses, Jurusan Teknik Kimia Universitas Diponegoro (UNDIP) Semarang.
Widodo, Slamet, 2019, "Review Sensor Gas Berbasis Metal Oksida Semikonduktor Untuk Mendeteksi Gas Polutan Yang Selektif Dan Sensitif", Jurnal Techno-Socio Ekonomika, Volume 12- Nomor 2, Oktober 2019, ISSN 1979-4835, Hal. 92-112.
Widodo, Slamet, 2020, "Kajian Perkembangan Teknologi Sensor Gas Untuk Emisi Gas Buang Kendaraan Bermotor", Jurnal Techno-Socio Ekonomika, Volume 13, Nomor 1, April 2020, ISSN 1979-4835, e-ISSN:2721-2335, Hal.71-80.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Penulis memegang hak cipta dan memberikan jurnal hak penerbitan pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi karya tersebut dengan pengakuan atas kepengarangan karya dan publikasi awal dalam jurnal ini.