ANALISIS RANGKAIAN LISTRIK DENGAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN DEKOMPOSISI LU

Authors

  • Abdul Rahman Universitas Lancang Kuning
  • Fitria Juliani Universitas Lancang Kuning

DOI:

https://doi.org/10.32897/infotronik.2024.9.2.3877

Keywords:

system of linear equations, electric circuits, kirchoff's law, lu decomposition

Abstract

The system of linear equations is a topic found in the field of mathematics, which is a branch of algebra. This topic can be implemented in various fields, one of which is in the electrical domain, specifically in electrical circuits. The system of linear equations in electrical circuits is used to analyze the relationships between current and voltage in complex circuits. By applying Kirchhoff's laws, we can formulate equations that represent each element in the circuit. The resulting system of linear equations is then solved using the LU decomposition method. LU decomposition is a technique used to solve systems of linear equations by breaking down the matrix into two components: a lower triangular matrix (L) and an upper triangular matrix (U). The method used to decompose the matrix is the Doolittle method. This article employs matlab as a tool to assist in solving the system of linear equations. Through matlab, this process is automated, enabling quick and accurate analysis of various circuit configurations, such as the obtained results in the discussion  and  which represent the current values flowing through each component.

References

K. Piranda, K. Fitradinata, R. F. Nugraha, and N. Zakiah, “Penerapan Sistem Persamaan Linear Dalam Ekonomi,” Al-Aqlu J. Mat. Tek. dan Sains, vol. 2, no. 1, pp. 24–30, 2024.

J. Pan et al., “Experimental realization of quantum algorithm for solving linear systems of equations,” Phys. Rev. A - At. Mol. Opt. Phys., vol. 89, no. 2, pp. 1–5, 2014.

A. Kurniawan and A. Suparwanto, “Sistem Persamaan Linear Max-Plus Dan Terapannya Pada Sistem Jaringan Kereta Api (Max-Plus Linear Equation System and Its Application on Railway Network System),” J. Mat. Thales, vol. 02, no. 01, pp. 63–77, 2020.

Nurhayati, P. M. Labulan, and Berahman, “Kemampuan Menyelesaikan Masalah Sistem Persamaan Linear Pada Siswa Kelas X,” Primatika J. Pendidik. Mat., vol. 11, no. 2, pp. 121–128, 2022.

R. Nasmirayanti, R. Imani, U. D. Arman, and A. Sari, “Analisa Linier Eliminasi Gauss-Jordan Untuk Analisis Struktur Rangka Batang Segitiga Sederhana,” Rang Tek. J., vol. 5, no. 1, pp. 156–159, 2022.

N. A. Fanani et al., “ISSN 3030-8496 Jurnal Matematika dan Ilmu Pengetahuan Alam,” vol. 1, no. 2, pp. 21–32, 2024.

D. Anugrah, “Penerapan Hukum Kirchhoff dan Hukum Ohm pada Analisis Rangkaian Listrik Menggunakan Software Electronics Workbench,” J. Syst. Inf. Technol. Electron. Eng., vol. 2, no. 2, pp. 1–11, 2022.

Y. Mahajan, S. Obla, M. K. Namboothiripad, M. J. Datar, N. N. Sharma, and S. B. Patkar, “FPGA-based acceleration of lu decomposition for analog and RF circuit simulation,” Proc. - 33rd Int. Conf. VLSI Des. VLSID 2020 - Held Concurr. with 19th Int. Conf. Embed. Syst., pp. 131–136, 2020, doi: 10.1109/VLSID49098.2020.00040.

L. Razik, L. Schumacher, A. Monti, A. Guironnet, and G. Bureau, “A comparative analysis of LU decomposition methods for power system simulations,” 2019 IEEE Milan PowerTech, PowerTech 2019, no. June, 2019, doi: 10.1109/PTC.2019.8810616.

E. Kreyszig, H. Kreyszig, and E. J. Norminton, Advanced Engineering Mathematics, 10th ed. Hoboken: John Wiley & Sons, 2012.

H. Anton and C. Rorres, Elementary Linear Algebra, 11th ed. Hoboken: John Wiley and Sons, Inc, 2013.

B. L. Theraja and A. K. Theraja, Electrical Technology, 1st ed. New Delhi: S. Chand and Compant LTD, 2005.

Published

2024-12-31

How to Cite

Rahman, A., & Juliani, F. (2024). ANALISIS RANGKAIAN LISTRIK DENGAN SISTEM PERSAMAAN LINEAR MENGGUNAKAN DEKOMPOSISI LU. Infotronik : Jurnal Teknologi Informasi Dan Elektronika, 9(2), 90–94. https://doi.org/10.32897/infotronik.2024.9.2.3877