Review on Polyurethane Solubilization in Deep Eutectic Solvents (DES) for Plastic Recycling
DOI:
https://doi.org/10.32897/techno.2025.18.1.4097Kata Kunci:
Pelarut eutektik dalam, fisikokimia unik, pelarutan, poliuretanAbstrak
Pelarut eutektik dalam (Deep Eutectic Solvents/DES) adalah kategori baru pelarut ramah lingkungan yang dibuat melalui interaksi antara donor ikatan hidrogen (hydrogen bond donors/HBDs) dan akseptor ikatan hidrogen (hydrogen bond acceptors/HBAs) dalam rasio molar tertentu, yang menunjukkan karakteristik fisikokimia unik. DES memiliki volatilitas rendah, tidak mudah terbakar, dan stabilitas tinggi, menjadikannya pengganti yang ramah lingkungan untuk pelarut konvensional. Sifat fisik utama DES, termasuk densitas, viskositas, dan stabilitas termal, sangat penting untuk fungsinya. Karakteristik ini dipengaruhi oleh parameter seperti suhu, komposisi komponen, dan rasio molar, sehingga memungkinkan penyesuaian untuk tujuan tertentu. DES telah menunjukkan potensi besar dalam berbagai bidang, termasuk elektrokimia, sintesis material, dan proses kimia ramah lingkungan, berkat kemampuan adaptasi dan keamanannya. Dalam bidang pelarutan poliuretan (polyurethane/PU), DES memiliki potensi yang signifikan. Proses pelarutan ini dikaitkan dengan penghancuran ikatan hidrogen dalam polimer dan pelarutan ikatan uretan oleh komponen DES, yang diperkuat oleh jaringan ikatan hidrogen yang kuat. Dengan menyesuaikan sifat-sifat DES, para peneliti dapat meningkatkan proses degradasi PU, menawarkan solusi berkelanjutan untuk masalah limbah plastik. Artikel ini menyoroti karakteristik dasar, sifat fisik dan kimia, berbagai aplikasi, serta potensi DES dalam pengembangan teknologi pelarutan PU.
Referensi
Narayana Saibaba K V. Applications of Waterborne Polyurethanes Foams. In: Advances in Science, Technology and Innovation. 2021.
Das A, Mahanwar P. A brief discussion on advances in polyurethane applications. Adv Ind Eng Polym Res [Internet]. 2020;3(3):93–101. Available from: https://doi.org/10.1016/j.aiepr.2020.07.002
Yeligbayeva G, Khaldun M, Abdassalam A. Alfergani, Tleugaliyeva Z, Karabayeva A, Bekbayeva L, et al. Polyurethane as a versatile polymer for coating and anti-corrosion applications: A review. Kompleks Ispolʹzovanie Miner syrʹâ/Complex Use Miner Resour Shikisattardy Keshendi Paid. 2024;331(4):21–41.
Wang Y, Song H, Ge H, Wang J, Wang Y, Jia S, et al. Controllable degradation of polyurethane elastomer via selective cleavage of C e O and C e N bonds. J Clean Prod [Internet]. 2018;176:873–9. Available from: https://doi.org/10.1016/j.jclepro.2017.12.046
Zafar U, Houlden A, Robson GD. Fungal communities associated with the biodegradation of polyester polyurethane buried under compost at different temperatures. Appl Environ Microbiol. 2013;
Kemona A, Piotrowska M. Polyurethane recycling and disposal: Methods and prospects. Polymers (Basel). 2020;12(8).
Molero C, De Lucas A, Rodríguez JF. Recovery of polyols from flexible polyurethane foam by “split- phase” glycolysis with new catalysts. Polym Degrad Stab. 2006;91(4):894–901.
Naik PK, Kumar N, Paul N, Banerjee T. Deep Eutectic Solvents. Deep Eutectic Solvents Liq Extr. 2022;1–23.
Khajeh A, Shakourian-Fard M, Parvaneh K. Quantitative structure-property relationship for melting and freezing points of deep eutectic solvents. J Mol Liq [Internet]. 2021;321:114744. Available from: https://doi.org/10.1016/j.molliq.2020.114744
Nahar Y, Thickett SC. Greener, faster, stronger: The benefits of deep eutectic solvents in polymer and materials science. Polymers (Basel). 2021;13(3):1–24.
Jablonský M, Škulcová A, Šima J. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules [Internet]. 2019;24. Available from: https://consensus.app/papers/deep-eutectic-solvents-polymer-chemistry–a-review-jablonský/402ba3ce181552eba215b0fa94cf36f7/
Zhang H, Cui X, Wang H, Wang Y, Zhao Y, Ma H, et al. Degradation of polycarbonate-based polyurethane via selective cleavage of carbamate and urea bonds. Polym Degrad Stab [Internet]. 2020;181:109342. Available from: https://doi.org/10.1016/j.polymdegradstab.2020.109342
Gajardo-Parra NF, Lubben MJ, Winnert JM, Leiva Á, Brennecke JF, Canales RI. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. J Chem Thermodyn. 2019;133:272–84.
Zhekenov T, Toksanbayev N, Kazakbayeva Z, Shah D, Mjalli FS. Formation of type III Deep Eutectic Solvents and effect of water on their intermolecular interactions. Fluid Phase Equilib [Internet]. 2017;441:43–8. Available from: http://dx.doi.org/10.1016/j.fluid.2017.01.022
El Achkar T, Greige-Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett [Internet]. 2021;19(4):3397–408. Available from: https://doi.org/10.1007/s10311-021-01225-8
Bušić V, Molnar M, Tomičić V, Božanović D, Jerković I, Gašo-Sokač D. Choline Chloride-Based Deep Eutectic Solvents as Green Effective Medium for Quaternization Reactions. Molecules. 2022;
Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq [Internet]. 2016;215:345–86. Available from: http://dx.doi.org/10.1016/j.molliq.2015.12.015
Manurung R, Arief A, Hutauruk GR. Purification of red palm biodiesel by using K2CO3 based deep eutectic solvent (DES) with glycerol as hydrogen bond donor (HBD). AIP Conf Proc. 2018;1977.
Omar KA, Sadeghi R. Physicochemical properties of deep eutectic solvents: A review. J Mol Liq [Internet]. 2022;360:119524. Available from: https://doi.org/10.1016/j.molliq.2022.119524
Achkar T El, Greige‐Gerges H, Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environ Chem Lett [Internet]. 2021;19:3397–408. Available from: https://consensus.app/papers/basics-properties-deep-solvents-review-achkar/43334ea99c0f59c988e162ca144f3e4a/
Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta [Internet]. 2013;766(2010):61–8. Available from: http://dx.doi.org/10.1016/j.aca.2012.12.019
Farooq MQ, Abbasi NM, Anderson JL. Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A [Internet]. 2020;1633:461613. Available from: https://doi.org/10.1016/j.chroma.2020.461613
Li G, Row KH. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. TrAC - Trends Anal Chem [Internet]. 2019;120:115651. Available from: https://doi.org/10.1016/j.trac.2019.115651
Mubashir M, D’Angelo FN, Gallucci F. Recent Advances and Challenges of Deep Eutectic Solvent based Supported Liquid Membranes. Sep Purif Rev [Internet]. 2022;51(2):226–44. Available from: https://doi.org/10.1080/15422119.2021.1901742
Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM. Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain Chem Eng. 2014;2(10):2416–25.
Tang B, Row KH. Recent developments in deep eutectic solvents in chemical sciences. Monatshefte fur Chemie. 2013;144(10):1427–54.
Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD. Glycerol eutectics as sustainable solvent systems. Green Chem. 2011;13(1):82–90.
Chanu L V., Singh OM. A Mini-Review of Deep Eutectic Solvents. In: Deep Eutectic Solvents: Properties, Applications and Toxicity. 2022.
Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol Adv [Internet]. 2017;35(2):105–34. Available from: http://dx.doi.org/10.1016/j.biotechadv.2016.11.006
Yaqub A, Ajab H. Applications of sonoelectrochemistry in wastewater treatment system. Rev Chem Eng. 2013;29(2):123–30.
Jablonský M, Škulcová A, Šima J. Use of deep eutectic solvents in polymer chemistry–a review. Molecules. 2019;24(21):1–33.
Wu Q, Lv X, Xu N, Xin L, Lin G, Chen K, et al. Upcycling plastic polymers into single-walled carbon nanotubes from a magnesia supported iron catalyst. Carbon N Y [Internet]. 2023;215(July):118492. Available from: https://doi.org/10.1016/j.carbon.2023.118492
Gautam R, Kumar N, Lynam JG. Theoretical and experimental study of choline chloride-carboxylic acid deep eutectic solvents and their hydrogen bonds. J Mol Struct. 2020;
Zia KM, Bhatti HN, Ahmad Bhatti I. Methods for polyurethane and polyurethane composites, recycling and recovery: A review. React Funct Polym. 2007;67(8):675–92.
Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor IM, Ramón DJ. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. European J Org Chem. 2016;2016(4):612–32.
Unduhan
Diterbitkan
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 TECHNO-SOCIO EKONOMIKA

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Penulis memegang hak cipta dan memberikan jurnal hak penerbitan pertama dengan karya yang dilisensikan secara bersamaan di bawah Creative Commons Attribution 4.0 International License yang memungkinkan orang lain untuk berbagi karya tersebut dengan pengakuan atas kepengarangan karya dan publikasi awal dalam jurnal ini.